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Dirac (staggered) fermions in the adjoint representation, defined on a 4d space with one
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in two different ways; the dependence of these results on the quark mass is discussed.

We study also chiral properties and how they are affected by the different realizations of

center symmetry; chiral symmetry, in particular, stays spontaneously broken at the phase

transitions and may be restored at much lower values of the compactification radius. Our
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QCD with adjoint fermions in the large Nc limit.
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1 Introduction

Extracting the physics of large Nc QCD from simulations or analytic computations per-

formed on small volumes, down to a single site, has been the aim of large theoretical efforts

since the original work by Eguchi and Kawai [1]. However, the expectation that physics

on a d-dimensional L1 × . . . Ld periodic lattice should be independent, as Nc → ∞, of the

lattice sizes L1, . . . Ld, is justified if no transition occurs as the sizes L1, . . . Ld are changed:

this is not true in ordinary Yang-Mills theories in d > 2, which undergo phase transitions

as one or more dimensions are compactified below a given threshold, corresponding to

the spontaneous breaking of the center symmetry in that direction. One or more Wilson

(Polyakov) lines in the compactified directions get a non-zero expectation value, i.e. one or

more deconfining-like transitions take place (see ref. [2] for a review on the subject).

Large Nc QCD with Nf fermions in the antisymmetric representation, or QCD(AS),

has attracted lot of theoretical interest in the last few years, as a different Nc → ∞ limit

of ordinary QCD: it is indeed equivalent to ordinary QCD for Nc = 3. Orientifold planar

equivalence states that QCD(AS) is equivalent, in the large Nc limit and in the charge-even

sector of the theory, to QCD with fermions in the adjoint representation, QCD(Adj) [3].

Such equivalence is guaranteed if the charge conjugation symmetry is not spontaneously

broken in QCD(AS) [4]: that is true for sufficiently large volumes, but fails in presence of

a compactified dimension, below a typical compactification radius [5, 6].

Recently it has been made the hypothesis [7] that instead QCD with one or more adjoint

fermions would persist in the confined phase (i.e. no phase transition would occur) as one of

the dimensions is compactified, if the boundary conditions for fermions are periodic in that

direction (i.e. if the compactified dimension is not temperature-like). That would imply

physics be volume independent in the large Nc limit, and thus would open the possibility of

studying QCD(Adj) down to arbitrarily small volumes, finally connecting information, via

orientifold planar equivalence, to the physical properties of QCD(AS) on large volumes.

– 1 –
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That would be a breakthrough in the study of large Nc QCD, with possible important

implications also for the knowledge of real QCD. It is therefore of great importance to

work on such conjecture, providing evidence from numerical lattice simulations.

The argument given in ref. [7] is based on the analysis of the 1-loop effective potential

for the Polyakov (Wilson) line, Ω, taken along a compactified dimension of length Lc, in

presence of Nf (Nf/2) flavors of massless Majorana (Dirac) adjoint fermions, which is

given, up to a constant, by

Veff(Ω) =
1 ∓Nf

24π2L4
c

Nc
∑

i,j=1

[φi − φj]
2([φi − φj ] − 2π)2 (1.1)

where the −/+ sign occurs for periodic/antiperiodic boundary conditions (p.b.c./a.b.c.)

in the given direction, eiφj , j = 1, . . . Nc are the eigenvalues of the Polyakov line, which

satisfy the constraint
∏

j e
iφj = 1, and [x] = (x mod 2π).

At arbitrarily small compactified dimension, the 1-loop potential gives all relevant in-

formation. For Nf = 0 or for a.b.c., the potential implies attraction among the eigenvalues:

indeed it is minimized when they coincide, meaning that the Polyakov line alignes itself

along some center element and center symmetry is spontaneously broken. Instead, for

Nf > 1 and p.b.c. the potential changes sign and becomes repulsive: the Polyakov line is

disordered in this case and center symmetry is not broken, exactly as in the infinite volume,

confined phase. The potential in eq. (1.1) is given for zero quark mass m and corrections

are expected for finite m, however results should not change as finite quark masses are

switched on, and indeed it has been shown in ref. [8] that the disordered confined phase

is always preferred for small enough (compared to ΛQCD) quark masses. Analogous re-

sults are obtained when studying the 1-loop potential in the lattice regularized theory [11],

while contrasting results (i.e. a center symmetry breaking 1-loop potential) obtained in a

three-dimensional reduced model [12] should be interpreted with care and may be due to

the absence of certain center stabilizing relevant operators which should in principle be

included in the reduced model [11]. Finally, a similar effect is obtained in the pure SU(Nc)

gauge theory by adding a trace deformation (i.e. proportional to the adjoint trace of the

Polyakov line) to the usual Yang-Mills action [9, 10].

An essential requirement for volume independence in the large Nc limit is that nothing,

i.e. no phase transition, happens as the compactified dimension spans from infinity to

the arbitrarily small, perturbative regime, i.e. that the system stays always confined and

does not explore any other phase in between. That can be verified by numerical lattice

simulations. While numerical results exist for pure SU(Nc) gauge theories with trace

deformations [10], no result still exists concerning QCD with dynamical adjoint fermions.

In the present paper we consider the example of Nc = 3 with 2 flavors of Dirac adjoint

fermions, providing numerical evidence that the requirement above is highly non-trivial.

The system that we have studied undergoes several phase transitions when shrinking from

the large volume to the small volume confined regimes. Our study has been performed for

finite values of the quark masses: the fact that these phase transitions may disappear in

the chiral limit is not excluded, but our present data show that this is non-trivial.

– 2 –
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The Nc = 3 case may in principle be quite far from the large Nc limit and one may

question about the relevance of our results to the conjecture proposed in ref. [7]. However

the argument for the absence of center symmetry breaking in the perturbative, small Lc

limit, which is based on the analysis of the 1-loop potential in eq. (1.1), is valid indepen-

dently of Nc. Therefore the fact that different phases may be present between the large

volume and the small volume regime, as established for Nc = 3 in the present paper, is a

possibility that should be taken into account also for larger values of Nc. To summarize,

while our findings could be relevant just to the particular case studied here and to the

discretization setup used, they are a warning claiming for further studies with different

values of Nc and approaching the continuum limit. A step in this last direction is taken

already in our investigation: some of our data have been obtained for different values of the

lattice spacing, showing that at least the first critical length which is met when shrinking

the compactified dimension may have a well defined physical value in the continuum limit,

i.e. that it has the correct behavior expected by Renormalization Group arguments.

The paper is organized as follows. In section II we present details about lattice QCD

with adjoint fermions and about our numerical simulations. In section III we present our

numerical results, concerning the realization of both center symmetry and chiral symmetry

as a function of the size of the compactified dimension, and discuss the limit of zero quark

mass and the continuum limit as well. In section IV we discuss our conclusions.

2 QCD(Adj) on the lattice and simulation details

Fermions in the adjoint representation of SU(3) have 8 color degrees of freedom and can

be described by 3 × 3 hermitian traceless matrices:

Q = Qaλa (2.1)

where λa are the Gell-Mann’s matrixes. The elementary parallel trasports acting on them

are given by the 8−dimensional U(8) representation (which is real) of the gauge links

Uab
(8) i,µ =

1

2
Tr

(

λaU(3) i,µλ
bU †

(3) i,µ

)

(2.2)

where i is a lattice site. The full discretized lattice action used in our investigation is

given by

S = SG

[

U(3)

]

+
∑

i,j,a,b

Q̄a
iM

[

U(8)

]a,b

i,j
Qb

j (2.3)

SG is the standard pure gauge plaquette action with links in the 3-dimensional

representation

SG = β
∑

�

(

1 − 1

Nc
TrΠ�

)

where β is the inverse gauge coupling β = 2Nc/g
2
0 and the sum is over all elementary

plaquette operators Π� of the lattice. M is the fermionic matrix, which has been chosen

– 3 –
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according to the standard staggered fermion discretization:

M
[

U(8)

]a,b

i,j
= amδi,jδ

a,b +
1

2

4
∑

ν=1

ηi,ν

(

Ua,b
(8) i,νδi,j−ν̂ − U † a,b

(8) i−ν̂,νδi,j+ν̂

)

(2.4)

Notice that, since gauge links acting on adjoint fermions are real matrixes, Ma,b
i,j is real as

well. The functional integral, describing 2 flavors of Dirac adjoint fermions in the continuum

limit, is then given by

Z =

∫

DUe−SG(detM [U(8)])
1/2 (2.5)

Due to the reality of M , that can be expressed in terms of a real pseudofermion field living

only on even sites of the lattice as follows

Z =

∫

DUDΦee
−SG exp

(

−Φt
e(M

tM)−1
ee Φe

)

(2.6)

In this form the functional integral distribution can be easily sampled by a standard Hybrid

Monte Carlo algorithm. In particular we have adopted the so-called Φ algorithm [13].

We shall consider in the following a system in which one dimension is compactified and

has size Lc. Adjoint parallel transports are blind to the center of the gauge group, hence the

presence of adjoint fermions does not break explicitely center symmetry in the compactified

direction. The fundamental Polyakov line L(3) taken along the compactified dimension is

not invariant under the same symmetry, and is therefore an exact order parameter for its

spontaneous breaking.

If fermions are given a.b.c. in the compactified dimension, the Feynman path integral

can be interpreted as the partition function at temperature T = 1/Lc. The spontaneous

breaking of center symmetry is then associated to deconfinement. Various numerical studies

of finite temperature QCD(Adj) have been performed in the past, mostly aimed at studying

the relation between deconfinement and chiral symmetry restoration [14–16].

In our investigation we have considered fermions with p.b.c. along the compactified

dimension. This theory cannot be interpreted as a thermodynamical system (apart from

the case of infinite fermion mass), but must considered simply as a system with a shorter,

compactified spatial dimension. Nevertheless we shall refer to the phase where the funda-

mental Polyakov line acquires a non-zero expectation value, oriented along an element of

the center of the gauge group, as a “deconfined” phase.

In most of our numerical simulations we have kept a fixed number of lattice sites along

the compactified direction, and varied its physical size by tuning the lattice spacing a via

the inverse gauge coupling β. Asymptotic freedom implies that a → 0 as β → ∞, hence

the compactified dimension is made shorter and shorter as β is increased. Since we are

mostly interested in studying which phases are explored by the system as the size of the

compactified dimension is changed from large to small values, and not in the exact location

of the possible phase transitions, it is enough for our purposes to look at the phase structure

of theory as a function of β at fixed number of lattice sites. However we shall try to get an

estimate of physical scale ratios, by means of the 2-loop perturbative β-function, describing

– 4 –
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the asymptotic dependence of the lattice spacing a on β, or alternatively by performing

numerical simulations also at a fixed value of the lattice spacing, in which Lc is tuned by

changing the number of lattice sites in the compactified dimension.

It is essential to repeat our investigation for different values of the quark mass. An

infinite quark mass corresponds to the pure gauge theory, where it is well known that two

different phases, deconfined or confined, take place respectively for short or large values of

the compactified dimension; such phases are separated by a first order transition [17]. For

small enough quark masses one expects instead center symmetric phases both for a very

large or a very short size of the compactified dimension, with or without different phases

in between. It is then clear that a highly non-trivial phase structure must be found in the

quark mass - Lc plane. For this reason we have performed numerical simulations at five

different values of the bare quark mass, am = 0.50, 0.10, 0.05, 0.02 and 0.01.

In all cases we have chosen molecular dynamics trajectories of length 0.5, with typical

integration steps δt ranging from 0.025 (for am = 0.50) to 0.005 (for am = 0.01), so as

to keep an acceptance rate around 80%. For each parameter choice (am, β, Lc) we have

collected between 2k and 20k trajectories. Numerical simulations have been performed on

the APEmille machine in Pisa and the apeNEXT facility in Rome.

3 Numerical results

We start by presenting results obtained on a lattice 163 × L̂c, with L̂c = 4 and p.b.c. for all

fields. The shorter direction plays the role of the compactified dimension of length Lc =

L̂ca(β,m). In order to distinguish the various phases corresponding to different possible

realizations of center symmetry, we have studied the expectation value and distribution of

the trace of the Polyakov line, L(3), taken along the shorter direction and averaged over

the orthogonal 3d space, as a function of β and am.

In figures 1 and 2 we show scatter plots of the distribution of L(3) in the complex

plane, for am = 0.1 and am = 0.02 respectively, and for different values of β. In each case

four different phases are clearly distinguishable:

• In a first phase at low β values, correponding to large values of Lc, L(3) is distributed

around zero with a vanishing expectation value. That corresponds to the usual

confined, center symmetric phase of QCD(Adj).

• As β increases (Lc is made shorter), the system passes into a phase with a broken

center symmetry, with L(3) aligned along one of the center elements of SU(3). We

call this phase deconfined, since it is analogous to the usual high temperature phase

of QCD.

• At very high values of β (very small Lc) the system is again in a center symmetric,

confined-like phase, in agreement with the prediction of the one-loop potential in

eq. (1.1). Since this phase seems to be distinguished and separated from the low

temperature confined phase, we refer to it as re-confined.

– 5 –
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Figure 1. Scatter plots of the distribution of the trace of the Polyakov line, L(3), in the complex

plane, for various values of β and at a fixed quark mass am = 0.10 on a 163 × 4 lattice.

• Finally, a new phase is present for values of β (Lc) between the deconfined and the

re-confined phase, in which center symmetry is broken by a non-zero expectation

value of L(3), which is however oriented along directions rotated roughly by an angle

π, in the complex plane, with respect to those corresponding to center elements. This

phase is completely analogous to that found by the authors of ref. [10] in their study

of pure gauge SU(Nc) gauge theories with adjoint Polyakov line deformations, and

predicted again by the same authors, on the basis of the 1-loop effective potential,

also in the case of QCD(Adj) with p.b.c. and for some range of m and Lc [8]. We shall

refer to this phase as a split or skewed phase, following the convention in ref. [10].

The transitions among the different four phases are also clear from figure 3, where we

report the average value of |L(3)| as a function of β for the different quark masses explored.

In most cases the average modulus is small at low β (confined) phase; then starts growing

at a critical value βc/d separating the confined from the deconfined phase; a second critical

value βd/s is reached, separating the deconfined from the split (skewed) phase, at which

the modulus drops roughly by a factor 3; finally a third critical value βs/r is met where the

system goes into the new center symmetric phase with a small average modulus for L(3).

In the case of am = 0.5 only two phases (confined and deconfined) are visible in figure 3,

simply because of the limited range of β shown in the figure. The evidence for the existence

– 6 –
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Figure 2. Same as in figure 1, but for am = 0.02.

of a split (skewed) phase is weaker at the smallest quark mass explored, am = 0.01. Typical

time histories for the real and imaginary parts of L(3) are shown in figure 4, in particular

for the confined and deconfined phase at the lowest quark mass explored, am = 0.01.

It is interesting to notice that in each different phase the Polyakov line modulus has

a very small dependence on the quark mass, much weaker than what observed in the case

of finite temperature QCD(Adj) (see for instance results reported in ref. [14, 15]). In the

present case the main effect of changing the quark mass seems that of moving the location

of the phase transitions.

Locations of the critical couplings as a function of the bare quark mass are reported

in table 1. Regarding the order of the phase transitions, we have indications, coming from

abrupt jumps of observables or presence of metastabilities, that they are all first order, at

least for am ≥ 0.05. For the smallest quark masses, am = 0.01 and am = 0.02, transitions

look smoother. A deeper investigation and a finite size scaling analysis would be needed

to reach a definite conclusion: that goes beyond our present purposes. However we notice

that true phase transitions (continuous or discontinuous) should be found at points where

the realization of the (exact) center symmetry changes.

Let us now discuss our results. The confining behaviour observed at large Lc (low

β) is in agreement with the usual infinite volume behaviour of QCD(Adj). The confining

behaviour observed at small Lc (high β) is in agreement with the prediction of the one-loop
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Figure 3. Average value of the Polyakov line modulus, on a 163 × 4 lattice, as a function of β and

for different bare quark masses.

am βc/d βd/s βs/c

0.50 5.575(5) 7.50(10) 8.50(20)

0.10 5.41(1) 5.71(1) 6.00(5)

0.05 5.37(1) 5.56(1) 5.82(3)

0.02 5.33(1) 5.485(10) 5.65(3)

0.01 5.32(1) 5.465(10) 5.55(5)

Table 1. Critical values of β as a function of the bare quark mass for the transition from the

confined to the deconfined phase (βc/d), from the deconfined to the split (skewed) phase (βd/s), and

from the split to the weak coupling confined (re-confined) phase (βs/c). In the case of am = 0.01

the split phase is absent and βd/s actually indicates the transition from the deconfined to the

re-confined phase.

effective potential in eq. (1.1): fermions contribute with a repulsive, disordering interaction

for the Polyakov line eigenvalues, which is opposite and wins over the ordering gluon

contribution. What is non-trivial is the behaviour observed at intermediate values of Lc,

where it is clear that higher order and finite quark mass corrections to the one-loop effective

potential play a significant role. In the deconfined phase those corrections result in an
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Figure 4. Time histories (in units of Molecular Dynamics trajectories and including part of the

thermalization) of the real and imaginary part of L(3), for am = 0.01 and two different β values in

the confined and deconfined phase respectively.

overall attractive interaction for the eigenvalues which orders the Polyakov line along a

center element. In the case of the split (skewed) phase instead, the free energy minimum

is apparently reached as two eigenvalues coincide and the third one gets a phase π with

respect to them, as in the following SU(3) matrix

eik/Nc







−1 0 0

0 −1 0

0 0 1






(3.1)

That is not a minimum for the potential in eq. (1.1), which is instead minimized (in the

case of p.b.c. and for Nf > 1) by the traceless matrix diag(1, e2iπ/3, e−2iπ/3), however it

has been verified in ref. [10] that mass corrections to the 1-loop potential may move the

minimum to group elements like that in eq. (3.1). The trace of such group elements is 1/3

with respect to that of center elements: that roughly explains the drop observed for the

modulus of L(3) at βd/s.

It is also interesting to look at the behaviour of the adjoint Polyakov loop, which is

shown in figure 5 for the case am = 0.05: it is positive only in the deconfined phase and

negative outside. Since Tr(8) = |Tr(3)|2 − 1, the large negative values obtained for the aver-

age adjoint Polyakov loop in the re-confined phase can be interpreted as the fundamental
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Figure 5. Adjoint Polyakov loop compared to the modulus of the fundamental loop (divided by

a factor ten to fit in the figure), as a function of β for am = 0.05 on a 163 × 4 lattice.

loop becoming traceless point by point in the weak-coupling limit, in agreement with the

1-loop potential in eq. (1.1), while in the strong coupling regime the fundamental trace

averages to zero mainly because of long range disorder.

In the case of bare quark mass am = 0.10 we have repeated our runs on a 163×6 lattice,

i.e. taking L̂c = 6 sites in the compactified direction. Results for the modulus of L(3) are

reported in figure 6, where they are compared with results obtained on the 163 × 4 lattice.

The phase structure does not change and all the critical couplings move to larger values:

that is consistent with the possible existence of a continuum limit for the critical values

of the compactified dimension Lc = L̂ca(β, am). In particular the deconfinement critical

coupling moves from βc/d(L̂c = 4) = 5.41(1) to βc/d(L̂c = 6) = 5.50(1): that is consistent

with a constant critical length Lc/d = L̂ca(βc/d), since using the 2-loop β-function

aΛL ≈ R(β) =

(

β

6b0

)b1/2b2
0

exp

(

− β

12b0

)

(3.2)

with b0 and b1 given by [18]

b0 =
3

16π2
, b1 = − 90

(16π2)2
, (3.3)
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we get

a(βc/d(L̂c = 4))

a(βc/d(L̂c = 6)
≃ 1.6(2) .

βd/s and βs/r show a larger change when going from L̂c = 4 to L̂c = 6, which cannot

be interpreted in terms of the 2-loop β-function. This is due to the fact that we are not

working at fixed physical quark mass, but instead at fixed am, meaning larger and larger m

as β increases: as we increase L̂c we have to increase β to make a smaller and keep Lc = aL̂c

fixed, but at the same time, if am is fixed, also m = (am)/a increases meaning that also

the physical value of Lc changes. While the critical Lc/d corresponding to deconfinement

changes smoothly and stays finite as the quenched limit m→ ∞ is approached, so that this

effect may be small, the other two transitions must disappear in the same limit, meaning a

steepest dependence of the physical critical dimension on m (hence on β). We notice that

for L̂c = 6 the transition from the deconfined to the split (skewed) phase is accompanied

by strong metastabilities, testified by different simulations at equal values of β staying

in different phases for thousands of trajectories (see figure 6 where the results of those

simulations are reported for β = 6.2 and β = 6.4).

In order to get an idea of the scale separation between the different phases we have

also performed simulations at fixed quark mass and ultraviolet (UV) cutoff, and variable L̂c

(only even values of L̂c can be explored because of the staggered fermion discretization). In

particular in figure 7 we show the distribution of L(3) in the complex plane and its average

modulus for different value of L̂c on a 163 × L̂c lattice, at fixed bare quark mass am = 0.1

and inverse gauge coupling β = 5.75. The system is in the confined, center symmetric

phase for L̂ = 16, where 〈L(3)〉 = (0.0001(2), 0.0002(2)); it is still marginally confined for

L̂c = 14, where 〈L(3)〉 = (0.0005(2), 0.0001(2)), while as the compactified dimension is

squeezed further a finite Polyakov line expectation value develops already for L̂c = 12,

where 〈L(3)〉 = (0.0066(8),−0.0008(8)): this is clearly different from zero, even if quite

small due to strong UV noise. The system stays in the deconfined phase till L̂c = 6, while

it is clearly in the split phase for L̂c = 4. Finally, for the shortest compactified dimension

explored, L̂c = 2, it is in the center symmetric, re-confined phase. We conclude that, in this

case, the two center symmetric, confined phases, taking place at large or small values of

the compactified dimension, are not connected: they have boundaries which are separated

by a scale factor ∼ 3-4.

3.1 Approaching the chiral limit

Our results do not support the conjecture about volume independence of QCD(Adj), since

for all explored masses the two center symmetric phases taking place for large and small

values of Lc do not correspond to a unique confined phase, but are instead separated

by different phases in which center symmetry is spontaneously broken. However a very

important issue is whether this is true for arbitrarily small masses.

While our computational resources do not allow us to perform extensive simulations

for smaller quark masses, we can try to extrapolate to the chiral limit our results for the

critical values of β obtained on the 163×4 lattice and reported in table 1. We have therefore
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Figure 6. Comparison of results obtained for the average value of the Polyakov line modulus as a

function of β at am = 0.10 and on two different lattices, 163 × 4 and 163 × 6.

fitted the critical values of β obtained for each different phase transition according to

βcrit = βχ
crit + c1am+ c2(am)2 (3.4)

where βχ
crit indicates the critical coupling in the chiral limit.

Results are reported in figure 8. The split phase could disappear in the chiral limit,

and already at am = 0.01 the evidence for its existence is weaker. The values of the

critical couplings extrapolated to the chiral limit are the following: βχ
c/d = 5.310(15) for

the transition from the confined to the deconfined phase, and βχ
d/s = 5.444(15) for the

transition from the deconfined to the split (or re-confined) phase.

These results provide partial evidence for a deconfined phase surviving in the chiral

limit. The two confined phase are not connected but still separated, even in the chiral limit,

by a scale factor which is estimated, on the basis of the 2-loop β-function given in eq. (3.2),

to be roughly 2. We would like to stress that this is only the result of an extrapolation to

the chiral limit of the critical couplings βc/d and βd/s delimiting the deconfined phase in

the phase diagram in figure 8: there is still no definite evidence that the deconfined phase

actually extrapolates to am = 0.

In order to get more information on this issue we have performed a numerical simulation

at a smaller value of the quark mass, am = 0.005, and for a single value of β chosen well
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Figure 7. Scatter plots of the distribution of L(3) in the complex plane on a 163 × L̂c lattice at

fixed quark mass and UV cutoff (β = 5.75 at am = 0.10) for various values of the compactified

dimension L̂c.

within the deconfined region in figure 8, β = 5.40. In figure 9 we report the Monte-Carlo

time histories obtained for the real and imaginary part of the Polyakov loop respectively

at am = 0.01 and am = 0.005. It is apparent from the figure that while for am = 0.01

the system stays quite stably in the deconfined phase, for the lower mass it spends part

of the simulation time into a phase with a lower value of the Polyakov loop (seemingly a

split phase). More extensive (not affordable) simulations would be necessary to clarify the

issue, but we can at least say that some metastable behaviour is present at this mass which

may suggest an even less trivial phase structure close to the chiral limit.

Regarding the continuum limit of the phase diagram sketched in figure 8, our results

obtained for L̂c = 6 and am = 0.1 (see figure 6 and related discussion) show that at least

the deconfinement transition line for intermediate values of the quark mass has a well

defined continuum limit.

3.2 Chiral properties

It is interesting to study the fate of chiral symmetry and its connection with the different

observed realizations of center symmetry in this theory. The study of finite temperature

QCD(Adj) has shown that, unlike the case of ordinary QCD, phases may exist in which

deconfinement is not accompanied by chiral symmetry restoration [14–16]. In the present
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Figure 8. Possible sketch of the phase diagram in the β-am plane and approaching the chiral

limit, obtained by means of quadratic interpolations of the critical couplings as in eq. (3.4).

case, since a chirally symmetric phase is expected anyway in the weak coupling regime (i.e.

for short enough Lc), a new exotic phase could exist in which both chiral symmetry and

center symmetry are not spontaneously broken [19, 20].

In figure 10 we show the behaviour of the chiral condensate as a function of β for

different quark masses, as obtained on the 163 × 4 lattice, while in figure 11 we show the

extrapolations of the same chiral condensate values to the chiral limit for different values

of β which cover all the possible different phases described by the Polyakov line. Also in

this case we have used quadratic extrapolations

〈ψ̄ψ〉(am) = 〈ψ̄ψ〉(0) + a1am+ a2(am)2 (3.5)

which are shown as dashed lines in figure 11, together with similar extrapolations, including

also a term proportional to
√
am (continuous lines), analogous to those used in ref. [14].

Figure 11 shows that, independently of the extrapolation used, the chiral conden-

sate always extrapolates to a non-zero value, as am → 0, in all the range of β values

going at least up to β = 6.0. That means that the different transitions, corresponding

to different realization of center symmetry, do not affect chiral symmetry, which remains

spontaneously broken.

Instead at the highest value explored, β = 6.50, there is some evidence that the chiral

condensate may extrapolate to zero and chiral symmetry be restored: that would fit the
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Figure 9. Time histories, in units of Molecular Dynamics trajectories, of the real and imaginary

part of L(3), for β = 5.4 and two different values of am.

expectation of a chirally symmetric weak coupling phase. However we cannot draw a

definite conclusion from present results: at this value of β the lattice spacing is very small

and even am = 0.01 corresponds to a large quark mass, so that an extrapolation to zero

quark mass may be debatable; moreover one should also properly take into account the

running of the adimensional quark condensate measured on the lattice as the continuum

limit a→ 0 is approached.

Therefore, the only reasonable conclusion that we can draw from our results is that

the expected weak coupling restoration of chiral symmetry may happen at values of the

compactified dimension much shorter (at least one order of magnitude, as roughly estimated

on the basis of the 2-loop β-function) than those at which center symmetry transitions

take place.

It is interesting to ask if the information about the change in the realization of center

symmetry is transcripted in some other way into the chiral properties of the theory. A

possible candidate to give an answer is the dual chiral condensate introduced in ref. [21]

and defined as

Σ1 = − 1

2π

∫ 2π

0
dϕ e−iϕ〈ψ̄ψ〉(ϕ)

m (3.6)

where 〈ψ̄ψ〉(ϕ)
m is the chiral condensate measured with an assigned phase exp(iϕ) for the

fermionic boundary conditions in the compactified dimension (ϕ = 0 for p.b.c. and ϕ = π
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Figure 10. Chiral condensate as a function of β for different values of the bare quark mass on

the 163 × 4 lattice.

for a.b.c.), and Σ1 is nothing but its Fourier transform with respect to the phase. It can

be easily shown, e.g. by a loop expansion of the fermionic determinant, that in the infinite

quark mass limit the dual condensate becomes the usual Polyakov loop (adjoint Polyakov

loop in this case), hence it is a natural chiral quantity which could be sensible also to

the realization of center symmetry, as the adjoint loop is (see figure 5). As a very rough

estimate of Σ1, we have considered the quantity (〈ψ̄ψ〉(0)m − 〈ψ̄ψ〉(π)
m ), i.e. the difference in

the condensate measured using p.b.c. and a.b.c. respectively (that means only a change

in the observable, which is measured on the same configurations produced with dynamical

fermions having p.b.c.). In figure 12 we report results obtained for am = 0.05: as can be

appreciated this difference follows quite closely the behaviour of the adjoint Polyakov loop,

changing its sign in the deconfined phase. This is a confirmation, in a theory with a highly

non-trivial phase structure, that the realization of center symmetry is reflected in the way

the chiral condensate depends on the fermion boundary conditions [22].

4 Conclusions

We have studied QCD with three colors, 2 flavors of Dirac (staggered) fermions in the ad-

joint representation and one of the spatial dimensions compactified with periodic boundary
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Figure 11. Chiral condensate as a function of the quark mass and quadratic extrapolations to

the chiral limit including (continuous) or not including (dashed) a term proportional to
√
am, for

different values of the gauge coupling on the 163 × 4 lattice.

conditions for fermions. We have shown that 4 different phases are explored as the size

Lc of the compactified dimension is varied, corresponding to different realizations of center

symmetry. In particular two center symmetric, confined phases exist, for small and large

values of Lc, separated by two phases (deconfined and split phase) in which center sym-

metry is spontaneously broken in two different ways. We have some partial evidence that

the deconfined phase could persist and separate the two confined phases also in the chiral

limit. This conclusion is based on an extrapolation to the chiral limit of the critical lines

determined for quark masses down to am = 0.01. On the other hand a direct simulation at

a lower mass, am = 0.005, and at β = 5.4, which is inside the deconfined phase according

to the extrapolations above, has shown some sign of metastability which could signal a

less trivial phase structure close to the chiral limit. More extensive simulations at lower

masses, which are not affordable by our present computational resources, would be needed

to better clarify the issue.

Regarding the continuum limit, our results obtained for different values of the lattice

spacing (see figure 6) show that the deconfinement transition that breaks center symmetry

has a well defined continuum limit, at least for intermediate values of the quark mass.

More careful studies would be needed to investigate the continuum limit of the other phase
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m ) (see text) and the adjoint Polyakov loop for

am = 0.05 on a 163 × 4 lattice.

transitions. However, the mere existence of a center symmetry breaking transition and of

a center symmetric phase for asymptotically small values of the compactified dimension

should imply the existence of other transitions also in the continuum limit.

We have investigated the chiral properties of the theory and have provided evidence

that chiral symmetry is not restored until very small values of Lc, at least one order of

magnitude shorter than those at which center symmetry transitions take place. On the

other hand, we have verified that the realization of center symmetry is reflected in the way

the chiral condensate depends on the fermion boundary conditions, thus confirming similar

results obtained in ref. [22].

Our results may be relevant for a recently proposed conjecture about volume indepen-

dence of QCD(Adj) in the large Nc limit [7]: in particular the presence of a deconfined phase

separating the large and small volume confined phases would not support such conjecture.

We have shown that this is indeed the case for Nc = 3, therefore this possibility should

be taken into account also for larger values of Nc. Of course, apart from the fact that the

extrapolation to the chiral limit of our findings should be further investigated, our results

could be relevant just to the particular case studied here and to the discretization setup

used. It is therefore essential to perform further studies. In particular one should verify
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our results as the continuum limit is approached, also making use of improved actions or

different discretization setups, based for instance on Wilson instead of staggered fermions.
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